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Abstract. The observation of excitation of 2p states in a collimated 2s hydrogen beam passing through a
wide metal slit with no direct contacts or electric field applied (Sokolov effect) up to now has had no reason-
able explanation. A solution presented in this paper is formulated within the standard quantum-mechanical
framework with a consecutive wave packet treatment of the atomic center-of-mass wave function. It is found
that a very weak interaction of the beam diffraction halo with the slit, though negligible for center-of-mass
motion, coherently affects the intrinsic state of an atom in the beam and efficiently induces 2s → 2p
transitions. High sensitivity of this interference phenomena may be used to measure transverse coherence
length of the beam.

PACS. 03.65.-w Quantum mechanics

1 Introduction

The first excited doublet 2s1/2−2p1/2 states of the hydro-
gen atom are almost degenerate with the splitting, Lamb
shift, ∼4 × 10−6 eV, but their lifetimes, τs � 1/8 s and
τp � 1.6 × 10−9 s, differ by a factor of ∼108.

Therefore, the excited hydrogen becomes very quickly
cleaned from all excited states except 2s. One of effec-
tive way to get an excited hydrogen beam is by elec-
tron exchange of the proton beam on gaseous target. The
probability of this reaction has maximum at atomic veloc-
ity, which corresponds to the kinetic atomic energy near
20 keV. Just those typical beams will be considered in
this paper. For such a beam, decay length for 2p state is
near 3 mm, and after a few centimeters, the beam contains
only 1s and 2s atoms.

In the presence of an external electric field the new
eigenstates |1〉 and |2〉 are the superpositions of the |2s〉
and |2p〉 atomic states. When the beam in the |2s〉 state
non-adiabatically enters the field area it transforms into
a combination of |1〉 and |2〉. When, after a time inter-
val, the beam leaves the field area, the phases of the |1〉
and |2〉 components are different due to their different en-
ergies, and they are recombined not back into |2s〉 but
into a superposition of |2s〉 and |2p〉. The coefficients in
this superposition depend periodically on the phases of
the states |1〉 and |2〉, i.e. the time spent in the electric
field and/or field strength. Therefore, a charged capacitor
is acting on the hydrogen beam as a typical interferom-
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eter (beam splitting — phase shift — beam recombina-
tion). The difference from common interferometers is that
the beam splitting is not in space but in energy. Interfer-
ence pattern can be rather simply measured by intensity
of Lyman-α photons from 2p → 1s decays.

With a widespread interest in quantum properties of
matter beams, the hydrogen atom seems to be the best
candidate for experiments in atomic interferometry. The
main obstacle is the very short decay length of the 2p state,
that requires very precise and miniature equipment. The
first successful and so far unique H-atom interferometer
was constructed at the Kurchatov Institute by Sokolov [1],
where the central interferometer unit is a charged plane
capacitor with the slits in its plates for the beam to go
through. The width of the slits, a few hundred microns,
is much larger than beam width, a few dozen microns.
Experiments with this interferometer lead, in particular,
to high precision hyperfine structure and Lamb shift mea-
surements [2,3]. But the most interesting, unexpected and
puzzling are paradoxical results, which might be explained
by an unknown “long-range atom-metal-surface interac-
tion” [13], and was nicknamed as “Sokolov effect” [7]. Just
this “paradoxical” experimental results will be the object
of this paper.

2 What paradoxical is in experimental
results?

The convincing evidence of the effect was obtained with
a double interferometer. The scheme is simple: a well
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collimated 2s hydrogen beam passes sequentially through
the slits of the two capacitor-interferometers separated by
the distance L. The electric field in each capacitor is fixed,
but the 2p amplitudes created in both capacitors interfere.
Due to the L-dependent phase difference, an interference
pattern, with many periods, is seen when one changes the
inter-capacitor distance L. This part of experiment is in
agreement with the theory.

A “paradoxical” part of the experiments [4,5,13] comes
with the fact that the interference pattern in the 2p decay
intensity is also seen (though with a lower amplitudes)
when the field in the second capacitor is absent and even
if the capacitor is replaced by an uncharged metal plate
with a wide (compared to the beam size) slit. The effect
is present even in the simple scheme without a field, with
only a collimator and a slit. What might be an origin of
this “Sokolov effect”?

Since even a well collimated beam inevitably has a con-
tinuous diffraction halo that can overlap the slit matter,
one might consider a direct collision-like contact of the
atom with the slit resulting in the 2s → 2p transition.
For the slit in an infinitely thin plate, the atom would
bounce after such a collision. But for a real slit in a thick
plate, the forward scattering is possible from the impact
of the atom on the inner walls of the slit. Similar to in-
elastic collisions, this channel for the 2s → 2p transition
goes through the reduction of the wave function, and the
phases of the 2p amplitudes for different atoms would be
uncorrelated. This path may yield only a stochastic back-
ground rather than a steady interference pattern possible
for a smooth average field acting on each atom passing
through the slit. So, one should look for a smooth, electric
field like potential, acting on the atom during the passage
through the slit.

The first candidate could be induced or intrinsic elec-
tric field of the metal. Analysis is the most transparent in
the rest frame of the hydrogen atom, where the problem
is reduced to the interaction of the atom with a moving
nearby uncharged metal surface of the slit. In linear ap-
proximation in the field E(t) the admixture of 2p state is
given by

bp =
|e|
i�

〈2p | r |2s〉
∫ ∞

−∞
E (t) exp (−i∆t) dt, (1)

where 2∆ is the Lamb shift.
Estimates of possible electric fields (from mirror image

charges of the atom, structural non-uniformities in the
metal, etc.) give values by many orders of magnitude lower
than needed. The only explanation suggested so far was
based on an exotic “EPR-correlation” of the atom with
each electron of the metal [6,7].

The quantum-mechanical solution for the “Sokolov ef-
fect” presented in this paper utilizes the atom-surface
contact interaction acting on the halo tails of the atom
wave packet. As will be shown, this very weak interaction,
being negligible for center-of-mass motion, coherently af-
fects the intrinsic state of every atom and efficiently in-
duces 2s → 2p transitions.

Fig. 1. Scheme of experimental layout. A monochromatic hy-
drogen beam with 1s and 2s atoms passed a collimator (2) and
then enter more wider slit (3). Decays of created 2p states mea-
sured by detector (4). For the control, 2s states may be elimi-
nated from the beam by switching-on the quenching field (1).

Fig. 2. Example of readouts from experimental setup in Fig-
ure 1. Decays of 2p states, measured behind the slit as the
function of the distance between the collimator and the slit.
The beam before the collimator has 1s + 2s (black circles) or
pure 1s (open circles).

To be more specific, we consider the set-up and the
main parameters for one of the actual simple-scheme ex-
periments [1]. A monochromatic (energy near 20 keV, ve-
locity V = 2 × 106 m/s) beam of hydrogen 1s + 2s atoms
goes through a narrow collimator slit 0.06×2.0 mm2 and,
after a variable distance L (0 < L < 20 mm) is directed
through the second, wider, slit 0.2 × 4.0 mm2 strictly in
the center, without any observable contact with the slit
matter (Fig. 1). The intensity of 2p → 1s decays, mea-
sured behind the second slit as a function of L, shows
exponentially decreasing interference fringes (Fig. 2). At
L � 20 mm, where the fringes are not seen, the ratio of 2p
and 2s amplitudes is of the order of 10−4.

3 Beam shape and atomic wave function
after the collimator

An atomic beam is often described by a wave func-
tion. In fact, only a pure quantum state, or a coherent
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superposition of them can be described by a wave func-
tion. An atomic beam, whose origin is a thermal source,
can have coherence only inside single atom packets, while
the packets of different atoms do not interfere. The wave
function of the whole beam can be formally presented as a
random superposition of single-atom coherent packets. In
contrast to the beam shape, a directly measurable quan-
tity, the shape and the size of the single-atom packets
can be estimated only by atomic interferometry. Numer-
ous split — phase shift — recombine experiments in atom
optics [8,9] are sensitive only to the longitudinal coher-
ence. Two-slit diffraction is governed by transverse coher-
ence length, but may give only rough estimates for its
value. For what follows, we need a definite assumption on
the size of single atom packet. For a well collimated beam
with monochromaticity broken only by a finite transverse
size, it is reasonable to assume that single-atom packets
occupy the whole transverse size of the beam. This as-
sumption is not a principled one. Moreover, one of the
results of the paper is just the suggestion how to measure
this quantity.

In our case the wave function for the hydrogen atom
in the beam can be written as a product of the intrin-
sic atomic function Φ0(r) and that for center-of-mass mo-
tion, Ψ0

c.m.(R). For the intrinsic function we may omit the
main 1s component and write down a superposition of 2s
and 2p states

Φ0(r, t) = asφs(r) + apφp(r) exp[2i∆t − t/(2τ)], (2)

where 2s state is assumed to be stable and energies are
measured from the 2s level. For the center-of-mass func-
tion one may write

Ψ0
c.m.(R) = Ψ0

‖ (Z)Ψ0
⊥(R⊥), (3)

where |Ψ0
⊥|2 is supposed to reproduce the transverse den-

sity of the beam. The shape of the transverse packet,
Ψ0
⊥(R⊥), is a result of the interaction of the initial beam

with collimator slit matter and a consequent spreading.
Dynamics of this process seem too complicated for a rigor-
ous theoretical description but we may use simple models
and experimental hints.

In an analogy with atomic lithography, the transverse
cross section of the beam behind the slit can be treated as
a geometric optical image of the slit distorted by diffrac-
tion on both sides of a shadow boundary. For the param-
eters of our problem, diffraction is of the Fresnel type,

Kl2/L � 1, (4)

where K is the center-of-mass wave vector, l the slit size
and L the distance between the slit and its image (in our
case, between the collimator and the slit). Distortions on
the light-shadow boundary, fringes on the light side and
continuously decreasing tails on the dark side, are de-
scribed by the well-known Fresnel integrals [10]. In the
asymptotic region, where the distance from the shadow
boundary δ � √

L/K, the intensity of the beam is in-
versely proportional to δ2,

|Ψ⊥|2 ≈ I0
L

πKδ2
, (5)

where I0 is the intensity in the center of the beam [10]; the
coefficient for the matter wave in (5) is twice as large as
that for light waves due to the different dispersion ω(k).
A real slit is not perfect for the atomic de Broglie wave-
length ∼10−13 m, and diffraction fringes may be partly
washed out, but we shall use only the asymptotic esti-
mate (5) which will be still valid for real slits. In fact,
the shape and coherence of the packet may change with
time due to random perturbations, as collisions with resid-
ual gas in vacuum chamber. These effects, though not ex-
pected to be significant, may require numerical corrections
for comparison with experiments.

4 Coherent interaction of the beam
with a wide slit

The problem may be formulated as a Schrödinger equation

i�
∂

∂t
Ψ(R, r, t) = [Hc.m. + Hh + U(R, r)]Ψ(R, r, t), (6)

where an interaction of the slit matter with center-of-mass
motion and the hydrogen electron, U(R, r), is added to the
free Hamiltonian of the atom in the beam.

Generally, the atom-surface interaction can be de-
scribed by a potential only near the surface. The passage
through the matter accompanied by the medium ioniza-
tion is a complicated process, semi phenomenologically de-
scribed by Bethe-Bloch equation. In metal, the energy loss
is mostly due to electron exchange between the atom and
Fermi see of the metal. Evidently, this process breaks down
the coherence of atomic intrinsic states. In our case, the
atom interacts with the metal only by halo tails during the
packet stream over the slit edge. This very weak interac-
tion can not initiate electron transitions in the metal, its
degrees of freedom do not come into play, and the atom-
metal interaction can be reduced to the interaction of the
atomic electron with electrons of the metal by a repulsive
potential, which depends only on the distance from the
atomic electron to the metal plane surface. (We may dis-
regard a deviation from this dependence in a small area,
of the order of Bohr radius, near the slit edge.)

The general features of atom-slit interaction, discussed
above, can be qualitatively described by a model potential

U(R, r) = U0(Z + z − Z0) S (R⊥) , (7)

where the variable Z + z−Z0 corresponds to the distance
from the electron to the metal surface, and geometrical
factor, S(R⊥), is zero for R⊥ inside the slit and one oth-
erwise.

The impact can be viewed as the packet halo pene-
trates into a potential region up to the depth where the
halo loses its longitudinal velocity and streamlines the slit
edge. The details of this process supposed to be described
by solution of the equation (6). But some general results
may be obtained without an explicit solution.

The total loss of the atomic longitudinal momentum
due to the passage through the slit can be estimated
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simply as the fraction of the total atom momentum trans-
ferred to the slit,

δP ≈ −MV Θ, (8)

where Θ is the packet-slit overlap parameter,

Θ =
∫ ∣∣Ψ0

⊥(R⊥)
∣∣2 S (R⊥) dR⊥ (9)

defined with geometrical factor S(R⊥), introduced in (7).
The natural assumption, that the potential range is

much larger then Bohr radius, allows in the expansion

U0(Z + z − Z0) ≈ U0(Z − Z0) + z
d

dZ
U0(Z − Z0) (10)

to treat the last term as a small perturbation. This term
may be neglected for the center-of-mass dynamics, but
only this term provides a binding between the center-of-
mass and the intrinsic motion. Thus, for the equation (6),
one may use the approach similar to Born-Oppenheimer’s
for molecule: first, to find solution for the center-of-mass,
neglecting the binding with intrinsic state, and then con-
sider intrinsic dynamics caused by given center-of-mass
motion. Intrinsic dynamics is natural to consider in the
atom rest frame, where the center-of-mass function be-
comes time-dependent due to the moving slit (Z0 = V t)
and is determined by the equation

i�
∂

∂t
Ψc.m.(R, t) = [Hc.m. +U0(Z−V t) S (R⊥)]Ψc.m.(R, t).

(11)
Given solution Ψc.m.(R, t), the equation for the intrinsic
state can be represented as that for the atom in electric
field:

i�
∂

∂t
Φ = [Hh + zG (t)] Φ, (12)

where

G (t) =
∫

dR |Ψc.m.(R, t)|2 S (R⊥)
d

dZ
U0(Z−V t). (13)

The admixture of 2p state after the passage through the
slit is easily obtained from (12). In approximation linear
in G (t) one has

bp =
1
i�

〈2p |z| 2s〉
∞∫

−∞
G (t) exp (−i∆t) dt. (14)

This amplitude is similar to that generated by time-de-
pendent longitudinal electric field (1). “Effective electric
field” G (t) can be, in principle, found from (13) and solu-
tion of the equation (11). In fact, the latter is not easy to
solve, since the potential term, though small, is the only
essential for the halo deformation and cannot be treated
as small perturbation. Fortunately, we can estimate G (t)
by (8). From Heisenberg operator equation for momentum
with the Hamiltonian from (11), one has

i�
d
dt

P̂z =
[
P̂z , H

]
= −i�S (R⊥)

d
dZ

U0(Z − V t). (15)

Comparing (15) with (13), one may conclude that the fol-
lowing relation holds

G (t) = − d
dt

〈Ψc.m.| P̂z |Ψc.m.〉 . (16)

The depth of the halo penetration into the slit surface
matter (and the width of G (t), respectively) is, evidently,
much less then Lamb phase variation length V/∆ (which
is in our case near 0.3 mm). Therefore, in the integral (14),
one may replace the exponent by unity. Then the integral
from (16) gives the total loss of the longitudinal momen-
tum. As a result we have

bp =
−1
i�

〈2p |z| 2s〉 δP. (17)

Using (8) for δP and value ξa0 for the matrix element (nu-
merical parameter ξ = 3 for nonrelativistic case, and ξ =√

3 if selection is made for transition onto hyperfine com-
ponent 2p (F = 1; Fz = 0)), one finds

bp ≈ 1
i�

ξa0MV Θ = −iξΘ
M

m

V

vat
, (18)

where, in the last equality, electron mass, m, and atomic
velocity, vat = e2/�, are introduced to simplify numerical
estimates.

To evaluate the overlap factor Θ, one can make use
of equation (5). For long and narrow (“one-dimensional”)
slits with widths l1 and l2, respectively, the tail starts
at ±l1/2 from the center of the beam and meats the wide
slit from ±l2/2, and so the overlap starts from δ = (l2 −
l1)/2 and goes to infinity on both sides. With the intensity
I0 = 1/l1, one has

Θ � L

πKl1
2

∞∫

(l2−l1)/2

dδ

δ2
=

4
πKl1

L

(l2 − l1)
· (19)

For our illustrative numerical parameters this gives Θ ∼
10−7; then equation (18) results in bp ∼ 10−4.

When comparing with the experiment, one should take
into account another, incoherent, channel for the 2p exci-
tation which was discussed in Section 2. Being weak for a
wide slit, this process can be important for narrow slits,
in particular for the collimator. It plays a role of a back-
ground for the coherent effect. To clarify this point, we
consider a simplified scheme mentioned in Section 2.

5 Schematic experiment: collimator and slit
separated by the distance L

Let A1s, and A2s be the amplitudes of 1s and 2s com-
ponents, respectively, in the beam before the collimator.
There are several paths for atoms to finish with a non-zero
2p component after the slit. First, there is a pure coherent
path with the final amplitude

A2s

(
b(1)
p γei∆(L/V ) + b(2)

p

)
, (20)
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where b
(1)
p and b

(2)
p are the coherent 2p admixtures to the

2s state due to the passing through the collimator and the
slit, respectively, and γ is a damping factor,

γ = exp(−(2V τ)−1L). (21)

There exist also paths with incoherent interactions of the
atom with the collimator (discussed in Sect. 2), when 1s

is converted into 2s or 2p with probability amplitudes ξ
(1)
s

and ξ
(1)
p and 2s goes into 2p with the amplitude ηp. The

corresponding 2p admixtures on the slit are

A1sξ
(1)
s b(2)

p ; A1sξ
(1)
p γ; A2sη

(1)
p γ, (22)

where we have omitted phases.
The intensity of 2p decays is determined by the coher-

ent sum of all 2p amplitudes (more precisely, the ampli-
tudes b

(1,2)
p should be added coherently while ξs,p and ηp

are to be considered as random quantities) and has the
form

C + Dγ2 + 2Bγ cos
(

2∆

V
L + φ

)
, (23)

where the coefficients can be directly obtained from equa-
tions (20, 22). Making use of reasonable assumptions
A2s 	 A1s; b

(2)
p 	 1, one finds for the coefficients in (23)

B � |A2s|2|b(1)
p b(2)

p |;
C � |A1sξ

(1)
s b(2)

p |2; D � |A1sξ
(1)
p |2. (24)

The structure of (23) has experimentally observed form
(Fig. 2), namely, oscillating term with the period 2∆L/V
with the amplitude ∼γ, a term, proportional to γ2 and
L-independent term. The specific L-dependence in (23)
allows us to extract the numerical values of the coefficients
with the aid of the experimental curve. The only unknown
function of L is b

(2)
p . The linear dependence, which follows

from (18) and (19), was obtained in a simple packet model
and is, certainly, only a rough estimate.

Remark. In reality, the passage through a collimator
is more complicated process then have been considered.
In strong contact impact, many higher states may be ex-
cited and then, after cascade transitions populate 2s or 2p.
More precise experiment would be with a “clean” 2s beam
(“cooled” after the collimator) passing through two sepa-
rated wide slits.

6 Results and discussion

The question arises why the traditional approach, “an
atom at rest at the nearby moving surface”, is not cor-
rect. The answer is: it is correct, but for another problem,
namely the one with a fixed position of the atom as the
initial state. Such an initial state should be specially pre-
pared. It would be the case if one could select from the
beam only the atoms passing through the slit at a fixed
position inside the slit frames. Our preparation of the ini-
tial state is quite different. We have no information on

exact positions of the atoms. The situation is analogous
to the classical two-slit experiment, where the final in-
terference pattern disappears if one makes a selection of
atoms passing through a certain slit.

The crucial point of our approach is the description of
the atom in the beam as a wave packet. Such a descrip-
tion might be naively understood as a spatial distribution
of atoms over the cross section of the beam. In this in-
coherent picture only a tiny fraction of the atoms in the
tails of the distribution would be strongly (and randomly)
perturbed by the slit. For a wide slit it would lead to rare
unobservable events and, what is more important, could
not exhibit any interference pattern.

Contrary to that classical picture, we have consid-
ered the packet form for the center-of-mass wave function.
When passing the slit, only small parts of the packet, tails
of the halo, penetrate a surface and reach the high field
area. So, the field acting on the packet is strongly nonuni-
form and inevitably fluctuates from packet to packet, since
it is unrealistic to assume the packets of each atom in
the beam are identical in shape, size and position in the
beam. On the other hand, intrinsic state of the atom feels
the field averaged over the whole center-of-mass packet.
This averaged field is smooth and practically the same for
each atom in the beam, that provides the stable in time
(from atom to atom) interference. The averaging of the
contact field, acting on the far tails of the packet, over the
whole packet looks very paradoxical for classical packets
but inevitably follows for the packet wave function.

A strong field, that acts on the halo tails becomes very
weak after averaging over the whole packet. Observation of
the effect is possible due to the extremely sensitive “ap-
paratus” utilizing the 2s → 2p transition between close
levels. For large ∆ (when V/∆ is much smaller then pen-
etration depth), the integral in (14) would be negligible.

The strength of the coherent beam-slit interaction is
very sensitive to the shape and size of the atomic packet
that was assumed to occupy the full transverse size of the
beam. In fact, the packet shape can be studied with the
varying width of the slit. It seems very promising to di-
rect the beam successively past edges of two metal plates
placed on the opposite sides of the beam. Then one can
investigate the coherence between the opposite sides of
the halo and, in fact, measure the packet size. The trans-
formation of the packet halo tails after passing the metal
barrier can also be studied in those experiments.

The packet structure of the beam is transformed dur-
ing the passage through the collimator. A theoretical anal-
ysis of this process is problematic, and it is certainly of
interest to make experiments with varying parameters of
the collimator. The atom-surface interaction can be inves-
tigated by varying shape, structure and material of the
slit. The interference is very sensitive mean for investiga-
tion of these effects.

The beam-slit interaction was quantitatively described
by the simple model potential (7), which may be at-
tributed to a infinitely thin surface slit. The impact of the
beam halo with such a slit results in the full loss of the
halo momentum. For other front surface shape, the effect



252 The European Physical Journal D

may be reasonably predicted by the ratio of momentum
loss. If, say, front edges of the slit are at the angle θ 
= π/2
to the beam velocity, then the effect should be multiplied
by the factor (1 − cos θ).

Effect of the longitudinal walls of the slit frame needs
a special investigation. Here we shall confine ourself to
some general comments. Interaction of hydrogen atom
with metal surface is a vast field of active research. The
typical problems solved are atomic levels, their shifts and
broadening as a function of the atomic distance from
metal surfaces. For the upper atomic levels, these effects
may be quite large up to distances of dozens of Bohr ra-
dius [14,15]. To obtain the effective electric field, acting on
the intrinsic state, one should average the surface field over
the center-of-mass packet. For symmetric packets, the ef-
fects from two opposite edges of the slit cancel each other.
For asymmetric packets, one may get non zero result, but
in any case the effective field will be of transverse type. A
transverse field results in the transitions on to 2p states
with non zero momentum projections, which do not inter-
fere with the state produced by longitudinal field. So, the
only effect (if any) of this atom-surface interaction might
be a background.

An effective longitudinal field could be originated from
a beam-surface friction. Not to speak of a nature of the
friction, one may suggest a possible experimental obser-
vation of its existence. It is natural to assume that the
friction is proportional to the pressure and/or the beam
density near the surface. On the other hand, the cut of
halo tails at the front surface of the slit, naturally, initi-
ates transverse oscillations of the beam. The number of
oscillation periods, and, consequently, friction pulses, will
depend on the slit frame length. So, non uniform depen-
dence of the interference pattern intensity on the slit frame
length might be an evidence of the beam-surface friction.

A final remark of a more general nature. Packet
states are common objects in quantum mechanics. Their
“reduction” and “spreading” are mentioned in numerous
monographs and textbooks, but mostly in relation to gen-
eral methodological problems whereas the plane waves are
routinely used in practical applications. Validity of replac-
ing wave packets by plane waves for calculating scattering
cross sections was shown by Goldberger and Watson [11].

However, the use of asymptotic plane waves is inadequate
for bremsstrahlung processes with colliding beams when
the relevant impact parameters exceed the beam size [12].
Is there any other physical situation where the use of
packet states is of principal necessity and the problem
cannot be understood otherwise? Evidently, such specific
effects might be small, and their observation would be pos-
sible only in special experimental conditions. Just one of
such effects was considered in this paper.

The author gratefully acknowledges many interesting and help-
ful discussions with Yu.L. Sokolov on details of experiments.
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